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The Earth and other planets have magnetic fields

 The Earth’s Dynamo 
 Primarily a dipole, aligned with rotation axis 
 liquid metal core is turbulent ( Re~106 )

 Glatzmaier and Roberts, A three-
dimensional self-consistent computer 
simulation of a geomagnetic field 
reversal, Nature  377 203 (1995).



The Earth’s dynamo is spatially complex 
and dynamic

 Jackson, Jonkers and Walker, Four centuries of geomagnetic 
secular variation, Phil. Trans. R. Soc. Lond. A  358 957 (2006).



The Sun’s magnetic field is even 
more complex

 The Sun’s magnetic field 
Free surface, rigid inner core
Large scale dipole with higher order multipoles
Periodic (22 year cycle)



Magnetic field of Sun is dynamic



Solar magnetic field alternates polarity

 Hathaway http://science.msfc.nasa.gov/ssl/pad/solar/dynamo.htm (2005)

http://science.msfc.nasa.gov/ssl/pad/solar/dynamo.htm
http://science.msfc.nasa.gov/ssl/pad/solar/dynamo.htm


How are these magnetic fields generated?

‘‘ . . . possible for the internal cyclic motion to 
act after the manner of the cycle of a self-
exciting dynamo, and maintain a permanent 
magnetic field from insignificant beginnings, at 
the expense of some of the energy of the 
internal circulation.’’

J. Larmor, How could a rotating body such as the Sun 
become a magnet? Br. Assoc. Adv. Sci. 159 (1919).
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What is a self-exciting dynamo?

feedback

!J = σ
(

!E + !V × !B
)

Induction Equation

Equation of Motion

Faraday’s Law of Induction

~ µ0 σ a V



The self-excited generator 
of Werner von Siemens (1866)

The “dynamo electric principle”
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MHD equations describe well the magnetic field 
evolution in a liquid metal or plasma

Ohm’s law and
Pre-Maxwell’s 

Equations 

∇× V ×B
1

µoσ∇
2B

∼ µoσLV0 ≡ Rm

Induction Equation

Equation of Motion



Fluid flow can amplify and distort magnetic fields 
when the magnetic Reynolds number is large

 transverse component of field is generated, 
amplifying the initial field

 finite resistance leads to diffusion of field lines
0



Standard Model of an MHD dynamo  
Step 1:  dipole field can be converted into strong toroidal field

The “Ω  effect” 

Induction Equation

∂Bφ

∂t = Rm rBP ·∇Ω + (∇2 − r−2)Bφ



Cowling’s Anti-Dynamo Theorem

When the magnetic field and the fluid 
motions are symmetric about an 
axis...no stationary dynamo can exist.

 T.G. Cowling, The magnetic fields of sunspots, 
Monthly Notices Roy. Astron. Soc.  94 39 (1933).



Standard Model of an MHD dynamo  
Step 2: Nonaxisymmetric, helical flows convert toroidal field 
back into dipole

The “α  effect” 
 E.N. Parker, Hydromagnetic dynamo models, 

Astrophys. J. 122 293 (1955)

〈J〉 = σ
(
〈E〉 + 〈V 〉 × 〈B〉 +

〈
ṽ × b̃

〉)
B = 〈B〉 + b̃, V = 〈V 〉 + ṽ

Mean Field Electrodynamics

E =
〈
ṽ × b̃

〉
= α 〈B〉+ β∇× 〈B〉



The Standard Dynamo Model: The αΩ Dynamo

1.  Ω-Effect: differential, 
axisymmetric rotation generates 

Bφ from seed dipole

Bφ ∝ Rm Bp 

Amplification 
depends on 
Rm=μ0σaV

2.  symmetry breaking helical 
fluctuations generate toroidal 

current:  Jφ =σ αBφ 
αB is turbulent EMF= <VxB>

Jφ reinforces
seed field

~  ~

seed Bp



Current state of theory is to solve the non-
linear MHD equations numerically

 Induction equation                                     

 Equation of Motion 



Why do Experiments?

...in magnetohydrodynamics one 
should not believe the product of a long 
and complicated piece of mathematics 
if it is unsupported by observation.

     Enrico Fermi



Why do experiments when we can simulate 
self-exciting dynamos?"

 Simulations are limited in resolution and speed
 To resolve resistive dissipation scale requires a 3D grid of 

Rm3

  easy for Earth where Rm=300-600
  hard for Sun where Rm=107

 To resolve viscous dissipation scale requires a 3D grid of Re3

 Pm = Rm/Re is a property of the medium
 for liquid metals and solar plasma Pm=10-5

 Re>107 in Earth and Liquid metal experiment
 Flows are very turbulent
 Can’t be simulated accurately
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Which flows are self-exciting 
dynamos? 
The kinematic dynamo problem:
 choose geometry (e.g. a sphere)

 uniform conductivity σ
 radius a
 surrounded by an insulating region

 Find V(r) which leads to growing B(r,t)
 Ignore back-reaction



The kinematic dynamo problem
 Solve induction equation:

 Since its linear in B, use separation of variables:

 Solve eigenvalue equation for given V(r) profile
λnBn = Rm∇× V̂ ×Bn +∇2Bn

B (x, t) =
∑

n eλnτBn (x)

∂B

∂τ
= Rm∇× V̂ ×B +∇2B

τ = t/µoσa2, V̂ = V /Vmax

Rm = µoσaVmax



General solution shows growth/damping depends 
upon Rm

 Rm = μ0 σ a Vmax ~ conductivity X size X velocity
 must exceed critical value for system to self-excite 

(typically 50 to 100)



Flows of liquid sodium can achieve high Rm
 Why sodium?

 Sodium is more conducting than any other liquid 
metal (melts at 100 C)

 How big must an experiment be to provide Rm=100?
 Power ≥ 100 kW
 a ≥ 0.5 m (volume ≈ 1 m3)
 Vmax  ∼15 m/s



Riga experiment successfully self-generated a 
dynamo in 2001 (essentially single helical vortex)
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 A. Gailitis, et al.,Magnetic Field Saturation in the Riga 
Dynamo Experiment, Phys. Rev. Lett. 86 3024 (2001)



The Karlsruhe experiment used channels to produce 
a small scale helical eddies to mimic the helical 
turbulence in the Earth’s core

 Muller and Stieglitz, Experimental demonstration of 
a homogeneous dynamo, Phys. Fluids 13 561 (2001).



France:  The VKS-II Experiment in Cadarache 
France recently self-excited

Berhanu et al.

Fig. 1: The VKS2 set-up is designed to generate a dynamo
flow in an electrically conducting fluid. The overall vessel is
a copper cylinder of radius 289 mm and length 604 mm. The
flow itself is confined within an inner copper cylinder (radius
R = 206 mm, length 524 mm, thickness 5 mm), with sodium at
rest between the inner and outer cylinders. An annulus of inner
radius 175 mm (thickness 5 mm) is fixed along the inner cylin-
der in the mid-plane between the disks. The counter-rotating
iron impellers have radius 154.5 mm and are set 371 mm apart
in the inner vessel; they are fitted with 8 curved blades of height
h = 41.2 mm. Their rotation frequencies are independently ad-
justable, up to 26 Hz. Magnetic measurements are made using
a temperature controlled, 3D Hall probe mounted flush on the
flow boundary, at the inner cylinder.

flow, which generates a high shear in the mid-plane. The
flow maximum driving power is 300 kW, and cooling
is performed using an oil flow inside the copper walls
of the vessel. It allows experimental runs at constant
temperatures between 110◦C and 160◦C. The integral
Reynolds numbers are defined as Rei = 2πKR2Fi/ν and
take values up to 5 106 where ν is the fluid viscosity and
K = 0.6 is a coefficient that measures the efficiency of the
driving impellers [12]. Corresponding magnetic Reynolds
numbers, Rmi = 2πKµ0σR2Fi, up to 49 at 120◦C are
reached – µ0 is the magnetic permeability of vacuum.
The magnetic field is measured with local Hall probes
inserted inside the fluid.

When the impellers are operated at equal and opposite
rotation rates F , a fully turbulent dynamo is observed
when F is larger than about 17 Hz (Rm = 31) [9]. The
self-sustained magnetic field is statistically stationary with
either polarity in this case. In the experiment, the rota-
tion rates (F1, F2) of the driving impellers can be inde-
pendently adjusted and this gives an additional degree of
freedom. Starting from a symmetric flow forcing, F1 = F2,
one can progressively change the rotation frequency of one
disk and explore regimes in which the faster disk imposes
some kind of global rotation to the flow, a feature common
to most natural dynamos.

We show in Figure 2 a preliminary inspection of the
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Fig. 2: (a) Preliminary inspection of dynamo regimes ob-
served as the impeller rotation frequencies are independently
set. Symbols: (o): statistically stationary dynamos, (+) no
dynamo, i.e., magnetic field less than 10 gauss at the mea-
surement location – and for measurement times longer than
180 s. (!): dynamo with reversals. (b) Examples of the time
variations of the main magnetic field component for rotation
frequencies of the disks, 22 − 22 Hz (Rm1 = Rm2 = 42.5) and
14 − 22 Hz (Rm1 = 27.5, Rm2 = 43.5). Note that on measure-
ment time scales of the order of 180 s, the regimes can depend
on the path followed to reach them.

parameter space accessible when the flow is driven with
disks rotating at different speeds. As said above, only sta-
tistically stationary dynamos are observed in the counter-
rotating case (Figure 2b). Another statistically stationary
dynamo mode is observed when the frequency of one im-
peller is increased from zero (say F1), the other being kept
fixed at 22 Hz, thus Rm2 in the range 42−43 depending on
the sodium temperature (Figure 2c). Note however that
its relative fluctuations are much smaller (compare Fig-
ures 2b, c), an effect possibly ascribed to global rotation.
This regime undergoes secondary bifurcations when the
slower impeller frequency is increased further. In a small
parameter range, ∆Fi/Fi ≈ 20%, a variety of dynamical
regimes, oscillations, intermittent bursts (not shown), as
well as dynamos with random reversals (Figure 3) are ob-
served. We also find pockets of parameters for which we
could not record the growth of a dynamo during 3-minute

p-2

2

the case of counter-rotating disks studied here, the pres-
ence of a strong axial shear of azimuthal velocity in the
mid-plane between the impellers generates a high level
of turbulent fluctuations [12, 13]. The kinetic Reynolds
number is Re = KR2Ω/ν, where ν is the kinematic vis-
cosity and K = 0.6 is a coefficient that measures the
efficiency of the impellers [14]. Re can be increased up
to 5 106: the corresponding magnetic Reynolds number
is, Rm = Kµ0σR2Ω ≈ 49 (at 120 oC), where µ0 is the
magnetic permeability of vacuum and σ is the electrical
conductivity of sodium.

A first modification with respect to earlier VKS ex-
periments consists of surrounding the flow by sodium at
rest in another concentric cylindrical vessel, 578 mm in
inner diameter. This has been shown to decrease the
dynamo threshold in kinematic computations based on
the mean flow velocity [14]. The total volume of liquid
sodium is 150 l. A second geometrical modification con-
sists of attaching an annulus of inner diameter 175 mm
and thickness 5 mm along the inner cylinder in the mid-
plane between the disks. Water experiments have shown
that its effect on the mean flow is to make the shear layer
sharper around the mid-plane. In addition, it reduces
low frequency turbulent fluctuations, thus the large scale
flow time-averages faster toward the mean flow. However,
rms velocity fluctuations are almost unchanged (of order
40− 50%), thus the flow remains strongly turbulent [15].
It is expected that reducing the transverse motion of the
shear layer decreases the dynamo threshold for the follow-
ing reasons: (i) magnetic induction due to an externally
applied field on a gallium flow strongly varies because of
the large scale flow excursions away from the time aver-
aged flow [16], (ii) the addition of large scale noise to the
Taylor-Green mean flow increases its dynamo threshold
[7], (iii) fluctuating motion of eddies increase the dynamo
threshold of the Roberts flow [17].

The above configuration does not generate a magnetic
field up to the maximum possible rotation frequency of
the disks (Ω/2π = 26 Hz). We thus made a last modifica-
tion and replaced disks made of stainless steel by similar
iron disks. Using boundary conditions with a high per-
meability in order to change the dynamo threshold has
been already proposed [18]. It has been also shown that
in the case of a Ponomarenko or G. O. Roberts flows,
the addition of an external wall of high permeability can
decrease the dynamo threshold [19]. Finally, recent kine-
matic simulations of the VKS mean flow have shown that
different ways of taking into account the sodium behind
the disks lead to an increase of the dynamo threshold
ranging from 12 % to 150 % [20]. We thought that using
iron disks could screen magnetic effects in the bulk of
the flow from the region behind the disks, although the
actual behavior may be more complex. This last modi-
fication generates a dynamo above Rm # 30. The three
components of the field $B are measured with a 3D Hall
probe, located either in the mid-plane or 109 mm away

from it (P1 or P2 in Fig. 1). In both cases, the probe
is nearly flush with the inner shell, thus $B is measured
at the boundary of the turbulent flow. Fig. 2 shows
the time recording of the three components of $B when
Rm is increased from 19 to 40. The largest component,
By, is tangent to the cylinder at the measurement loca-
tion. It increases from a mean value comparable to the
Earth magnetic field to roughly 40 G. The mean values
of the other components Bx and Bz also increase (not
visible on the figure because of fluctuations). Both signs
of the components have been observed in different runs,
depending on the sign of the residual magnetization of
the disks. All components display strong fluctuations as
could be expected in flows with Reynolds numbers larger
than 106.
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FIG. 2: Time recording at P1 of the components of the mag-
netic field when the rotation frequency Ω/2π is increased as
displayed by the ramp below (Rm increases from 19 to 40).

Fig. 3a shows the mean values of the components 〈Bi〉
of the magnetic field and Fig. 3b their fluctuations Bi rms

versus Rm. The fluctuations are all in the same range (3
G to 8 G, at 30 % above threshold) although the corre-
sponding mean values are very different. The time aver-
age of the square of the total magnetic field, 〈 $B2〉, is dis-
played in the inset of Fig. 3a. No hysteresis is observed.
Linear fits of 〈By〉 or Bi rms displayed in Fig. 3 define a
critical magnetic Reynolds number Rc

m ∼ 31 whereas the
linear fit of 〈 $B2〉 gives a larger value R0

m ∼ 35. The latter
is the one that should be considered in the case of a su-
percritical pitchfork bifurcation. The rounding observed
close to threshold could then be ascribed to the imper-
fection due to the ambient magnetic field (Earth field,
residual magnetization of the disks and other magnetic
perturbations of the set-up). The actual behavior may
be more complex because this bifurcation takes place on
a strongly turbulent flow, a situation for which no rig-
orous theory exists. The inset of Fig. 3b shows that
the variance B2

rms = 〈( $B − 〈 $B〉)2〉 is not proportional
to 〈B2〉. Below the dynamo threshold, the effect of in-
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FIG. 4: The dimensionless quantity, 〈B2〉µ0(σR)2/ρ is dis-
played as a function of Rm for different working temperatures
and frequencies (measurements done at P2 and identical sym-
bols as in the inset of Fig. 3b). The inset shows the same data
in dimensional form B2 versus rotation frequency for different
temperatures.

the boundary condition for the magnetic field generated
in the bulk of the flow. This changes the dynamo thresh-
old and the near critical behavior for amplitudes below
the coercitive field of pure iron. It should be also empha-
sized that the axisymmetry of the set-up cannot lead to
Herzenberg-type dynamos [25]. In addition, these rotor
dynamos display a sharp increase of the field at thresh-
old and their saturation is mostly limited by the available
motor power [25]. On the contrary, we observe a contin-
uous bifurcation with a saturated magnetic field in good
agreement with a scaling law derived for a fluid dynamo.

The different mechanisms at work, effect of magnetic
boundary conditions, effect of mean flow with respect to
turbulent fluctuations, etc, will obviously motivate fur-
ther studies of the VKS dynamo. A preliminary scan
of the parameter space has shown that when the disks
are rotated at different frequencies, other dynamical dy-
namo regimes are observed including random inversions
of the field polarity. Their detailed description together
with experiments on the relative effect of the mean flow
and the turbulent fluctuations on these dynamics are cur-
rently in progress.

We gratefully aknowledge the assistance of D. Cour-
tiade, J.-B. Luciani, P. Metz, V. Padilla, J.-F. Point
and A. Skiara and the participation of J. Burguete to
the early stage of VKS experiment. This work is sup-
ported by the french institutions: Direction des Sciences
de la Matière and Direction de l’Energie Nucléaire of
CEA, Ministère de la Recherche and Centre National
de Recherche Scientifique (ANR 05-0268-03, GDR 2060).
The experiments have been realized in CEA/Cadarache-
DEN/DTN.
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Big questions remain unanswered 
by experiments"
 What happens if the velocity field is not 

constrained by pipes and baffles? 

 What role does turbulence play in self-
excitation?
 Can turbulence generate current?  
 Does mean-field theory make sense?



This simplest possible self-exciting flow:
a two vortex flow with Rmcrit~50
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 Dudley and James, Time-dependent kinematic dynamos with 
stationary flows, Proc. Roy. Soc. Lond. A.  425 407 (1989).



Predicted eigenmode is an 
equatorial dipole



Dynamo is of the stretch-twist-fold type:  
field line stretching and reinforcement 
leads to dynamo



Dimensionally identical water experiment was 
used to demonstrate feasibility 

 Laser Doppler velocimetry is 
used to measure vector velocity 
field

 Measured flows are used as 
input to MHD calculation

 Full scale, half power 



LDV measurements provide data for a reconstruction 
of the mean velocity field
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Velocity fields can be generated in water which 
lead to dynamo action

a=0.5 m, σ=107 mhos 



The Madison Dynamo 
Experiment

300 gallons sodium

200 Hp (150 kW)
V~15 m/s

1 m

vessel heating and cooling



 Bz ≤ 100 gauss
 Measure 

 surface probes 
 Br(a,θ,ϕ)
 Ylm for l≤6, |m|≤4

 Internal Probes
 Bϕ(r,θp), 6 arrays
 Bz(r,θ=π/2)

Magnetic field is measured both internally and externally;  
external magnetic fields can be applied to probe experiment



Experiment: apply axisymmetric poloidal seed field 
to sphere and measure induced magnetic fields 
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Large scale (mean) and small scale (turbulent) magnetic 
fields are generated by liquid sodium flows

Br(a,θ)
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Spectra are turbulent:  the turublent magnetic 
energy is much smaller than the kinetic energy
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The time-averaged, axisymmetric part of the magnetic 
field shows poloidal flux expulsion and a strong Ω effect

Magnetic Flux Ψ   

-62.9 -31.4 0.0 31.4 62.9
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Bpol
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Magnetic field is reconstructed from magnetic field 
measurements at discrete positions

Bpol
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Question: Does a simple Ohm’s law make sense?

〈J〉 = σ
(
〈E〉 + 〈V 〉 × 〈B〉 +

〈
ṽ × b̃

〉)

Fluctuation driven

Measured by LDV

Time averaged 
current density 

generates 
measured <B>



<V>x<B>  does not account for measured field:  
turbulence must be generating current

B due to 〈V 〉 × 〈B〉

Bpol
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Bpol
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Field can be separated into mean-flow, mean-field 
driven currents and fluctuation generated currents

B due to 〈V 〉 × 〈B〉 B due to
〈
ṽ × b̃

〉



The mean induced magnetic field has a dipole moment

components of Ylm

Impossible to reconstruct 
with axisymmetric flows!

Bpol

Spence, Nornberg, Jacobson, Kendrick, and Forest,  Observation of a turbulence-
induced large-scale magnetic field, Phys. Rev. Lett.  96 055002 (2006).



Intermittent equatorial dipole is observed on 
surface of sphere

Equator



Excited eigenmode has structure similar to that 
predicted for the mean-flow, self-generated dynamo

Predicted Observed

Nornberg, Spence, Jacobson, Kendrick, and Forest, Intermittent magnetic field 
excitation by a turbulent flow of liquid sodium, Phys. Rev. Lett. 97 044503 (2006).



Conjecture: Flow increasingly 
spends time as dynamo
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 Liquid metal experiments are beginning to 
investigate self-exciting dynamos
 constrained helical flows are dynamos 

 Main Results from Madison Experiment
 Dipole generation by turbulence
 measurement of the magnetic field 

generated by fluctuations
 Intermittent self-excitation

Summary



Theorem:  For a stationary, axisymmetric flow and magnetic 
field, no dipole moment can exist for the current distribution 
inside the experiment (even with externally applied fields) 

Use cylindrical coordinates (s, Z,φ) and stream functions for velocity and mag-
netic fields:

"v = ∇Φ×∇φ + vφφ̂ (1)
"B = ∇Ψ×∇φ + Bφφ̂ (2)

The dipole moment µz =
∫

sJφd3x is generated by toroidal currents:

Jφ = σ"v × "B · φ̂ (3)

= σ
|∇Φ×∇Ψ|

s2
(4)

Switching to flux coordinates (Ψ, $) where d3x = d"dΨ
Bp

, the dipole becomes

µz = σ

∫ ∫
|∇Φ×∇Ψ| d$dΨ

sBp
(5)

= σ

∫
dΨ

∫
∂Φ
∂$

d$ ≡ 0 (6)



Proof continued

 Conclusion:  symmetry breaking fluctuations must 
be responsible for observed dipole
  consistent with an α-effect and the self-

generated toroidal field:  Jφ=σαBφ  

Integrating Φ along open poloidal flux contours gives
∫ b

a

∂Φ
∂"

d" = Φ(b)− Φ(a) = 0

since vessel boundary had Φ = const. Closed poloidal
flux contours give ∮

∂Φ
∂"

d" ≡ 0

Therefore, µz = 0 for axisymmetric flows. QED

Ψ   

Φ   


